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It is shown how two doubly infinite sets of series involving n may be obtained
using closure and a particular set of orthonormal functions. The first set of series
converge to n from below, while the second set converge to n from above. The
leading terms of the simplest of these series are alternately lower and upper bounds
to, and successive truncations of Wallis's formula. Some convergence properties of
these series are examined. © 1990 Academic Press. Inc.

Numerous expressions for n appear in the literature. Recently [1], for
instance, n was related to the ratio: the logarithm of the product to the
logarithm of the least common multiple of Fibonacci numbers. Expressions
for n in terms of infinite series are also quite common, some of these based
on trigonometric identities. In the present paper, n is shown to be expres
sible in terms of two, two parameter families of infinite series.

We derive, in what follows, the equalities

n = 1 3 f (A~'{)?,
2n + 1+ 3: n'~O

co

n = L A~:,I)B~~'/),

n'=O

(2)

where

A(n,/)- 1 (2n+21+1)!(2n'+21+1)! ~ ~ 22(p+p')
n' -2n+n'-21-1 (1)'(' I)' "I 1...- 1...-n + . n + . n. n . P = 0 p' = 0

x F( -n +p)F( -n' +p')(l +P +p' + 1)!(1+p')!(l +p)! (3)
T( -n)F( -n') p!p'!(21 + 2p + 1)!(21 + 2p' + 1)1

B(~'{)= ? (2n+21+1)!(2n'+21+1)! ~ ~ 22(p+p')
n 2n+n-21-1 (n+l)!(n'+l)!n!n'! p'::o/-:'o

x F( -n + p)F( -n' + p')(l +P + p')!(l + p')!(l +p)! (4)
F( -n)F( -n') p!p'!(21 + 2p + 1)1(21 + 2p' + I)!
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n = ~ + ~ + is + 210 + 3g24 + .,.

n=¥+i4+n+to+ ...

n=W+ m+fi+ 1~5+ .•.

o

TABLE I

Series for 71 Obtained from Equality (1)

n= lfff + its + l~~S + 4~2S + ...

n = ~~~~ + fiffi + .::is + 4mS + '"

TABLE II

Series for n Obtained from Equality (2)
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o n=4-~-fo-z\- ...

IT=5- 11 212-3- .,.

n = ¥- ¥S - 1~5 - lA9 - '" IT = 2156 - m- l~~S - -dh - '" IT = ~ - 1~~285 - 461is - 1OZ;1~5 - .,.
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In expressions (l) and (2), n, 1 are independent of each other and can
have any integral value ;;:::0. Thus, one has different series for each choice
of n, I. Some of these series are listed in Tables I and II. The simplest series
to obtain, see Tables I and II, are the fastest converging and hence the
most interesting, namely, when n = 0, In this case, (3) and (4) reduce to
single sums, Moreover, if one uses Legendre's duplication formula [2] to
transform (2n' + 21 + 1)!, (21 + 2p' + 1)! one can rewrite these single sums
as:

The hypergeometric functions 2F[ with unit argument in these expres
sions can be summed using Gauss's summation theorem [3J, yielding the
closed forms:

(0,1) _ 221 + 1 /!(l + 1)1 r(n' - ~)

An' - (21+ 1)! r(-~)

221 + [(/1)2 r(n' + 1)
R(O,I) _ • 2

n' - (21+1)!rW

Hence, from (1), with n=O:

while from (2),

(5a)

(5b)

(6a)
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= _I_!_ (221
+ 1l!(l +1)!)2

re (l + 1)! (21 + 1)!

00 r(n' _!) r(n' +!) r(l +1)x'" 2 2 2
L. r(_l) r(!) r(n' + 1+ 1) n"

n' =0 2 2 2'

=_I_!_(2
21

+
1
/!(l+1)!)2

(l + 1)! (21 +1)!

x (1 _r(l +~) 00 r(n' -~) r(n' + ~))
2r(~? )~1 r(n'+I+~)n'! .

(6b)

If n # 0, summing (3) and (4) over p also yields single sum expressions.
Thus

(I+ 1)' I'r(n' + 1+ 1) 22 + l re l 2r(n + 1+ l)A(n,I)- .. 2 2

n' - r(l +~) (21 + 1)! n'! r(l + ~) n!

n' r( -n' + p') r(l+ 2+ p') r(l+~)

x p~o r( -n') r(l +2) r(l + &+ p') p'!

x 2Fl( -n, 1+ p' + 2; 1+~; 1).

Using Gauss's summation formula this may also be written in terms of
an 3F2' namely:

(n,l) _ (l + 1)!( -l)nrm 2n

An' - r(l + ~) r( ~ - n)

x 3F2( - n', 1+ 2, ~; 1+ ~, ~ - n; 1). (7)

Unlike the corresponding expression when n = 0, expression (7) cannot
be summed in closed form except if 1= 0, in which case the 3F2 reduces to
an 2Fl which can be summed by Gauss's formula, yielding

A (~,O) = (-1 t 2n r(n' +~) 2re
1
/
2

r(n' - n - ~) (8)
n (2n+1)!n'! r(n'-n+~)r(-n-!)'

One notes that (3) and (4) are meaningtul (by taking limits) in spite of
the poles r(z) has at 0, -1, -2, ....

To obtain (1) and (2), one uses the complete set of three-dimensional
orthonormal functions frequently encountered in mathematical physics
[4J:

¢Jnlm/(r) = Rnlr) Y~/(e, (J).

In (9), the Y~/(e, (J) are the standard spherical harmonics [5J,

(9)
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{
2T(n + 1+ 1)}1/2 rle~r2/2

Rn,(r) = n! 2 T(l+~)IFI(-n;I+~;r2),

and n = 0, 1,2, ..., l= 0, 1,2, ..., while the integer m! satisfies Im!1 ::s; I so that

f dr rP~!m/(r) rPn'l'mAr) = (jnn' 0II" 0m/m/

and

L: ¢;nlm/(r) rP;lm/(r') = o(r - r').
n,l.mf

(11)

This set arises in the three dimensional quantum-mechanical harmonic
oscillator eigenvalue problem, namely

According to the quantum mechanical Virial Theorem [6], when the
potential energy (PE) depends on the second power of r (PE = r2/2),
the expectation value of the potential energy equals the expectation value
of the kinetic energy:

f r2 f V
2

dr rP~lml(r) '2 ¢;nlm/(r) = dr rP~lmJr) - 2" ¢;nlmlr ).

Hence,

which, using (10) equals 2n + I + ~.

On the other hand, using the fact that rPnlm/(r) is a complete set, one can
write, using (11)

f dr rP:!m/r ) r2rPnlmJr)

=f dr' fdr ¢;;Im/r)r ,~ ¢;n'l'm/(r) rp~'l'm/(r') r'rpnlmJr')
n./ ,mr

.L IJdr ¢;;lm/(r) rrPn'l'm/ (r{.
n,l,m{'
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(2n + 1+ ~) = ,~ If dr ~~Im;(r) r~n'I'm/,(r) \2.
n,l,m/'

(12)

(13)

Since r is a scalar, this implies I' must equal 1, and ml' must equal mi'
Moreover, the angular integrals in (12) can be evaluated directly. One
obtains

2n+l+~=n%o ft<XJ r
2

drRnl(r) rRn'l(r)r,

using the fact that the Rn/s are real.
On the right hand side of (13) each summand involves lin. If one defines

1 f<XJcA~~,I)= r2 drR nl (r)rRnAr),
..;n 0

the integral can be directly evaluated, yielding (3). One notes that all the
sums in (1) are series of positive terms. Thus, terminating these series after
a finite number of terms always gives a lower bound for n as opposed, for
example, to Leibniz's formula [7]

It is interesting to examine the leading terms in the series (1), namely,
those for which n = n'.

For n =0,

~_2_ (0,1) 2 __2_ ((I + 1)1 21
+ 1)2

n ~ 21 + 3 (A 0 ) - 21 + 3 (2/ + 1)! ! .

2x2. 2x2x4x4
If! = ° n ~ 2 x--' If 1= 1 n ~ 2 x ., lx3' '1x3x3xS'

'f 1- ~ 2 x 2 x 4 x 4 x 6 x 6
1 - 2, n ~ , etc.

lx3x3xSxSx7

Letting 1~ 00, we obtain Wallis's result for n [8]

2x2x4x4x6x6x8x8 .. ·
n=2x .

lx3x3xSxSx7x7x9 .. ·

(14a)

(14b)

(IS)

This result is to be expected, since, as /~ 00, the off-diagonal matrix
elements f~ r2 drRoI(r) rRn'l(r), n' #0 0, tend to zero, because, for large 1,
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by (10). Moreover, as seen from (14b), if 1= 0, 1, 2 .." one obtains Wallis's
expression truncated after an even number of terms in the numerator and
denominator.

For n = 1, 2, the leading terms (n' = n) in the series (1) are the expres
sions in (14a) multiplied by numerical factors which -d as /-l> 00, namely,

2 (0 I) 2 (2/ + 4,5)2
2/ + 3 (A o ' ) (2/ + 3)(21 + 7)'

2 (0 I) 2 (4P +221 +225/8)2
2/+3(A o ' ) (2/+3)(2/+5)2(2/+11)'

respectively. Thus, as l-l> 00, they reduce to these expressions. In other
words, just as for n = 0, so aJso for n = 1, 2 (and one expects, for any n),
the leading term by itself -l> n, as I-l> 00 indicating the series converge fast
for large l.

In an exactly analogous way to the steps leading to (12), one notes from
(10) and (11), that

fdr (!J:lm/(r) rPnlm/r )

= 1=fdr rP:lm/(r) r ~ rPnlmJr)

=fdr' f drrP:lmJr)r(j(r-r/)~rPnlm/(rl)

=fdr' f dr rI>:lm(r)r I rl>n'I'm;(r) rI>:'I'm;{r') ~ rl>nlm,(r')
n',I',m; r

= I fdr rI>:lm/(r) rrl>n'I'm;(r) fdr' rI>:'I'm;(r/) ~ rl>nlm/r'),
n',l',mi r

Thus, as above, using the fact that r, l/r are scalars, we obtain

and, integrating over the angular variables, we have

(18)
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which is just (2), if one defines

When this integral is evaluated directly, it yields (4).
The leading term of (6b) yields

2x2x4
lx3x3'

2x2x4x4x6
1 x 3 x 3 x 5 x 5'

(19)

for 1=0, 1,2, ....
This is Wallis's formula (15) truncated after an odd number of terms in

the numerator and denominator.
It is clear that the expressions in (19), unlike those in (14b) which are

lower bounds, are all upper estimates for n, since, unlike series (6a) where
all terms are positive, all the terms in the series (6b), other than the leading
term, are negative.

Wallis's expression can thus be broken down into successively more
accurate lower and upper bounds, a bit reminiscent of Archimides's [10J
lower and upper bounds for n obtained by inscribing polygons in circles
and also circumscribing these circles with polygons of successively more
and more sides. Thus

2x2 n 2
lx3<2"<1'

2x2x4x4 n 2x2x4
lx3x3x5<2"<lx3x3'

2x2x4x4x6x6 n 2x2x4x4x6
<-< .

lx3x3x5x5x7 2 lx3x3x5x5

(20)

It is easy to estimate the rate of convergence, which is quite remarkable for
large I. Thus, for n = 0, probably the most useful series, one sees that,
starting with the leading term (n' = 0) of the series (6a), the n'th term is
obtained by multiplication by

(21 )

For n'=lO and 1=0, this factor equals 2.32xlO- s, while for n'=lO and
1= 10, it is merely 3.35 x 10- 10•

For large values of n', one can easily obtain an estimate for the
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remainder in the series (6a) with the help of formulas derived from
Stirling's asymptotic series, in particular the formula [9]

1· F(z+a) a-b1m z.
z--> c>:J F(z+ b)

The n'th term in (6a), namely,

C 1 F(n' -~) T(n' - ~)

( ) T(n' +1+ ~) T(n' + 1)'
(22)

where C(l) is a constant depending on I, converges as n' -- co to
C(l)n' -1-7/2.

Since the series (l) have positive terms only, we can estimate their
remainder R beyond the Nth term by converting the remainder sum to an
integral. In the case n = 0 one obtains by (22), for large N,

R;::;;; C(l) fc>:J dn' n,-1-7/2 = C(l) N-
S

1
- 5/2 = N x Nthsterm

N (l + 2) 1+ 2

N;::;;; I x (Nth term). (23)

One notes that, if N> I, the ratio in (23) becomes larger than the Nth
term. There is, consequently, no advantage in including more than about
I terms in the series approximation for n. One should, therefore, increase I
and N simultaneously, thus benefiting from the faster convergence with
increasing I, while keeping the ratio Nil ~ 1. The convergence properties of
the series (6b) are similar to those of the series (6a).

Conclusion: Two (infinite) series converging to n are obtained for
n = 0, 1, 2, ..., and 1= 0, 1, 2.... These series are all distinct; the first
approaching n monotonically from below, while the second approach n
monotonically from above. The leading terms of the first of these series (for
n = 0, 1,2) approach Wallis's expression for n as 1-- co. For n = 0, the
leading terms of the first series are Wallis's expression truncated after an
even number of factors in the numerator and denominator, while for the
second series, they are Wallis's expression truncated after an odd number
offactorsin the numerator and denominator. One thus obtains successively
better upper and lower bounds for n. The new results (1), (2), (3), and (4)
are obtained with the help of and important set of functions of mathemati
cal physics. The series converge very fast with increasing I. To minimize the
remainder upon truncating a particular series, it is best to simultaneously
have large N and I, where N is the order of the partial sum taken.
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